PredictScript References

  1. Rubinstein, W. S., & Pacanowski, M. (2021). Pharmacogenetic gene-drug associations: FDA perspective on what physicians need to know. American Family Physician, 104(1), 16-19. https://www.aafp.org/afp/2021/0700/p16.html
  2. US Food and Drug Administration. (2021). Table of Pharmacogenomic Biomarkers in Drug Labeling, https://www.fda.gov/drugs/science‐and‐research‐drugs/table‐pharmacogenomic‐biomarkers‐drug‐labeling
  3. E Caudle, K., E Klein, T., M Hoffman, J., J Muller, D., Whirl-Carrillo, M., Gong, L., … & G Johnson, S. (2014). Incorporation of pharmacogenomics into routine clinical practice: the Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline development process. Current Drug Metabolism, 15(2), 209-217.
  4. Swen, J. J., Nijenhuis, M., van Rhenen, M., de Boer‐Veger, N. J., Buunk, A. M., Houwink, E. J., … & Dutch Pharmacogenetics Working Group (DPWG) of the Royal Dutch Pharmacists Association (KNMP). (2018). Pharmacogenetic information in clinical guidelines: the European perspective. Clinical Pharmacology & Therapeutics, 103(5), 795-801.
  5. Gaedigk, A., Whirl-Carrillo, M., Pratt, V. M., Miller, N. A., & Klein, T. E. (2020). PharmVar and the landscape of pharmacogenetic resources. Clinical Pharmacology and Therapeutics, 107(1), 43.
  6. Rehm, H. L., Berg, J. S., Brooks, L. D., Bustamante, C. D., Evans, J. P., Landrum, M. J., … & Watson, M. S. (2015). ClinGen—the clinical genome resource. New England Journal of Medicine, 372(23), 2235-2242.
  7. Landrum, M. J., Lee, J. M., Benson, M., Brown, G. R., Chao, C., Chitipiralla, S., … & Maglott, D. R. (2018). ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Research, 46(D1), D1062-D1067.
  8. Zarin, D. A., Tse, T., Williams, R. J., & Carr, S. (2016). Trial reporting in ClinicalTrials. gov—the final rule. New England Journal of Medicine, 375(20), 1998-2004.
  9. Wei, C. H., Phan, L., Feltz, J., Maiti, R., Hefferon, T., & Lu, Z. (2018). tmVar 2.0: integrating genomic variant information from literature with dbSNP and ClinVar for precision medicine. Bioinformatics, 34(1), 80-87.
  10. Freeman, P. J., Hart, R. K., Gretton, L. J., Brookes, A. J., & Dalgleish, R. (2018). VariantValidator: Accurate validation, mapping, and formatting of sequence variation descriptions. Human Mutation, 39(1), 61-68.
  11. Navarro Gonzalez, J., Zweig, A. S., Speir, M. L., Schmelter, D., Rosenbloom, K. R., Raney, B. J., … & Kent, W. J. (2021). The UCSC genome browser database: 2021 update. Nucleic Acids Research, 49(D1), D1046-D1057.
  12. Bousman, C. A., Wu, P., Aitchison, K. J., & Cheng, T. (2021). Sequence2Script: a web-based tool for translation of pharmacogenetic data into evidence-based prescribing recommendations. Frontiers in Pharmacology, 238.Table of Pharmacogenetic Associations: https://www.fda.gov/medical-devices/precision-medicine/table-pharmacogenetic-associations
  13. Table of Pharmacogenetic Associations: https://www.fda.gov/medical-devices/precision-medicine/table-pharmacogenetic-associations
  14. Table of Pharmacogenomic Biomarkers in Drug Labeling: https://www.fda.gov/drugs/science-and-research-drugs/table-pharmacogenomic-biomarkers-drug-labeling
  15. The Clinical Pharmacogenetics Implementation Consortium (CPIC): https://cpicpgx.org
  16. The Dutch Pharmacogenetics Working Group (DPWG) of the European Medicines Agency: https://upgx.eu/guidelines
  17. Kaye, A. D., Koress, C. M., Novitch, M. B., Jung, J. W., Urits, I., Viswanath, O., … & Cornett, E. M. (2020). Pharmacogenomics, Concepts for the Future of Perioperative Medicine and Pain Management, a Review. Best Practice & Research Clinical Anaesthesiology
  18. Perera, M. A., Thirumaran, R. K., Cox, N. J., Hanauer, S., Das, S., Brimer-Cline, C., … & Di Rienzo, A. (2009). Prediction of CYP3A4 enzyme activity using haplotype tag SNPs in African Americans. The Pharmacogenomics Journal, 9(1), 49-60.
  19. Zastrozhin, M. S., Skryabin, V. Y., Smirnov, V. V., Petukhov, A. E., Pankratenko, E. P., Zastrozhina, A. K., Grishina, E. A., Ryzhikova, K. A., Bure, I. V., Golovinskii, P. A., Koporov, S. G., Bryun, E. A., & Sychev, D. A. (2020). Effects of plasma concentration of micro-RNA Mir-27b and CYP3A4*22 on equilibrium concentration of alprazolam in patients with anxiety disorders comorbid with alcohol use disorder. Gene, 739, 144513. https://doi.org/10.1016/j.gene.2020.144513
  20. Sychev, D., Shikh, N., Morozova, T., Grishina, E., Ryzhikova, K., & Malova, E. (2018). Effects of ABCB1 rs1045642 polymorphisms on the efficacy and safety of amlodipine therapy in Caucasian patients with stage I–II hypertension. Pharmacogenomics and Personalized Medicine, 11, 157.
  21. Alexeevich, S.D. et al. (2019) Approaches to predicting the efficacy and safety of amlodipine in patients with arterial hypertension of i–II degree based on pharmacogenetic studies. Медицинский.289-297.
  22. Zhu, Y., Wang, F., Li, Q., Zhu, M., Du, A., Tang, W., & Chen, W. (2014). Amlodipine metabolism in human liver microsomes and roles of CYP3A4/5 in the dihydropyridine dehydrogenation. Drug Metabolism and Disposition, 42(2), 245-249.
  23. Kanuri, S. H., & Kreutz, R. P. (2019). Pharmacogenomics of novel direct oral anticoagulants: newly identified genes and genetic variants. Journal of Personalized Medicine, 9(1), 7.
  24. Ragia, G., & Manolopoulos, V. G. (2019). Pharmacogenomics of anticoagulation therapy: the last 10 years. Pharmacogenomics, 20(16), 1113-1117.
  25. Ueshima, S., Hira, D., Kimura, Y., Fujii, R., Tomitsuka, C., Yamane, T., … & Katsura, T. (2018). Population pharmacokinetics and pharmacogenomics of apixaban in Japanese adult patients with atrial fibrillation. British Journal of Clinical Pharmacology, 84(6), 1301-1312.
  26. Ueshima, S., Hira, D., Fujii, R., Kimura, Y., Tomitsuka, C., Yamane, T., … & Katsura, T. (2017). Impact of ABCB1, ABCG2, and CYP3A5 polymorphisms on plasma trough concentrations of apixaban in Japanese patients with atrial fibrillation. Pharmacogenetics and Genomics, 27(9), 329-336.
  27. Ou‐Yang, D. S., Huang, S. L., Wang, W., Xie, H. G., Xu, Z. H., Shu, Y., & Zhou, H. H. (2000). Phenotypic polymorphism and gender‐related differences of CYP1A2 activity in a Chinese population. British journal of clinical pharmacology, 49(2), 145-151.
  28. Miyagi, S. J., & Collier, A. C. (2007). Pediatric development of glucuronidation: the ontogeny of hepatic UGT1A4. Drug metabolism and disposition, 35(9), 1587-1592.
  29. Allen, J. D., & Bishop, J. R. (2019). A systematic review of genome-wide association studies of antipsychotic response. Pharmacogenomics, 20(04), 291-306.
  30. Meaden, C. W., Mozeika, A., Asri, R., & Santos, C. D. (2021). A review of the existing literature on buprenorphine pharmacogenomics. The Pharmacogenomics Journal, 21(2), 128-139.
  31. Zahari, Z., Lee, C. S., Ibrahim, M. A., Musa, N., Yasin, M. A. M., Lee, Y. Y., … & Ismail, R. (2015). The opposing roles of IVS2+ 691 CC genotype and AC/AG diplotype of 118A> G and IVS2+ 691G> C of OPRM1 polymorphisms in cold pain tolerance among opioid-dependent Malay males on methadone therapy. Pain and Therapy, 4(2), 179-196.
  32. Lie, M. U., Winsvold, B., Gjerstad, J., Matre, D., Pedersen, L. M., Heuch, I., … & Nilsen, K. B. (2021). The association between selected genetic variants and individual differences in experimental pain. Scandinavian Journal of Pain, 21(1), 163-173.
  33. cX cvxSchwantes-An, T. H., Zhang, J., Chen, L. S., Hartz, S. M., Culverhouse, R. C., Chen, X., … & Saccone, N. L. (2016). Association of the OPRM1 variant rs1799971 (A118G) with non-specific liability to substance dependence in a collaborative de novo meta-analysis of European-ancestry cohorts. Behavior Genetics, 46(2), 151-169.
  34. Zhou, H., Rentsch, C. T., Cheng, Z., Kember, R. L., Nunez, Y. Z., Sherva, R. M., … & Gelernter, J. (2020). Association of OPRM1 functional coding variant with opioid use disorder: a genome-wide association study. JAMA Psychiatry, 77(10), 1072-1080.
  35. Krumsiek J, Suhre K, Evans AM, Mitchell MW, Mohney RP, Milburn MV, et al. (2012) Mining the Unknown: A Systems Approach to Metabolite Identification Combining Genetic and Metabolic Information. PLoS Genet 8(10): e1003005.
  36. Kocabas, N. A., Faghel, C., Barreto, M., Kasper, S., Linotte, S., Mendlewicz, J., … & Massat, I. (2010). The impact of catechol-O-methyltransferase SNPs and haplotypes on treatment response phenotypes in major depressive disorder: a case–control association study. International Clinical Psychopharmacology, 25(4), 218-227.
  37. Kirchheiner, J., Klein, C., Meineke, I., Sasse, J., Zanger, U. M., Mürdter, T. E., Roots, I., & Brockmöller, J. (2003). Bupropion and 4-OH-bupropion pharmacokinetics in relation to genetic polymorphisms in CYP2B6. Pharmacogenetics, 13(10), 619–626. https://doi.org/10.1097/00008571-200310000-00005
  38. Eum, S. (2016). Pharmacogenetic tests for antipsychotic medications: clinical implications and considerations. Dialogues in Clinical Neuroscience, 18(3), 323.Bigos, K. L et al (2011). Genetic variation in CYP3A43 explains racial difference in olanzapine clearance. Molecular Psychiatry, 16(6), 620-625.
  39. Kenna, G. A. et al(2004). Pharmacotherapy, pharmacogenomics, and the future of alcohol dependence treatment, Part 2. American Journal of Health-System Pharmacy, 61(22), 2380-2388.
  40. Kivistö, K. T., Lamberg, T. S., Kantola, T., & Neuvonen, P. J. (1997). Plasma buspirone concentrations are greatly increased by erythromycin and itraconazole. Clinical Pharmacology and Therapeutics, 62(3), 348–354. https://doi.org/10.1016/S0009-9236(97)90038-2
  41. Bigos, K. L et al (2011). Genetic variation in CYP3A43 explains racial difference in olanzapine clearance. Molecular Psychiatry, 16(6), 620-625
  42. Takekuma, Y., Takenaka, T., Kiyokawa, M., Yamazaki, K., Okamoto, H., Kitabatake, A., Tsutsui, H., & Sugawara, M. (2006). Contribution of polymorphisms in UDP-glucuronosyltransferase and CYP2D6 to the individual variation in disposition of carvedilol. Journal of Pharmacy & Pharmaceutical Sciences: A Publication of the Canadian Society for Pharmaceutical Sciences, Societe Canadienne Des Sciences Pharmaceutiques, 9(1), 101–112.
  43. Bousman, C. A., Bengesser, S. A., Aitchison, K. J., Amare, A. T., Aschauer, H., Baune, B. T., … & Müller, D. J. (2021). Review and consensus on pharmacogenomic testing in psychiatry. Pharmacopsychiatry, 54(01), 5-17.
  44. Eum, S., Lee, A. M., & Bishop, J. R. (2016). Pharmacogenetic tests for antipsychotic medications: clinical implications and considerations. Dialogues in Clinical Neuroscience, 18(3), 323.
  45. Peyrot, W. J., & Price, A. L. (2021). Identifying loci with different allele frequencies among cases of eight psychiatric disorders using CC-GWAS. Nature Genetics, 53(4), 445-454.
  46. Stern, S., Linker, S., Vadodaria, K. C., Marchetto, M. C., & Gage, F. H. (2019). Prediction of Response to Drug Therapy in Psychiatric Disorders. Focus, 17(3), 294-307.
  47. Thorp, J. G., Campos, A. I., Grotzinger, A. D., Gerring, Z. F., An, J., Ong, J. S., … & Derks, E. M. (2021). Symptom-level modelling unravels the shared genetic architecture of anxiety and depression. Nature Human Behaviour, 1-11
  48. Howard, D. M., Adams, M. J., Clarke, T. K., Hafferty, J. D., Gibson, J., Shirali, M., … & McIntosh, A. M. (2019). Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nature Neuroscience, 22(3), 343-352.
  49. Levey, D. F., Stein, M. B., Wendt, F. R., Pathak, G. A., Zhou, H., Aslan, M., … & Gelernter, J. (2021). Bi-ancestral depression GWAS in the Million Veteran Program and meta-analysis in> 1.2 million individuals highlight new therapeutic directions. Nature Neuroscience, 1-10.
  50. Baselmans, B. M., Jansen, R., Ip, H. F., van Dongen, J., Abdellaoui, A., van de Weijer, M. P., … & Bartels, M. (2019). Multivariate genome-wide analyses of the well-being spectrum. Nature Genetics, 51(3), 445-451.
  51. Zhou, H., Sealock, J. M., Sanchez-Roige, S., Clarke, T. K., Levey, D. F., Cheng, Z., … & Gelernter, J. (2020). Genome-wide meta-analysis of problematic alcohol use in 435,563 individuals yields insights into biology and relationships with other traits. Nature Neuroscience, 23(7), 809-818.
  52. Paddock, S., Laje, G., Charney, D., Rush, A. J., Wilson, A. F., Sorant, A. J. M., Lipsky, R., Wisniewski, S. R., Manji, H., & McMahon, F. J. (2007). Association of GRIK4 with outcome of antidepressant treatment in the STAR*D cohort. The American Journal of Psychiatry, 164(8), 1181–1188. https://doi.org/10.1176/appi.ajp.2007.06111790
  53. Nims, R. W. et al (1997). In vivo induction and in vitro inhibition of hepatic cytochrome P450 activity by the benzodiazepine anticonvulsants clonazepam and diazepam. Drug Metabolism and Disposition, 25(6), 750-756; Patsalos, P. N. (2005). Properties of antiepileptic drugs in the treatment of idiopathic generalized epilepsies. Epilepsia, 46, 140-148
  54. Yukawa, E. (2002). Pharmacoepidemiologic investigation of clonazepam relative clearance by mixed‐effect modeling using routine clinical pharmacokinetic data in Japanese patients. The Journal of Clinical Pharmacology, 42(1), 81-88.
  55. Patsalos, P. N. (2005). Properties of antiepileptic drugs in the treatment of idiopathic generalized epilepsies. Epilepsia, 46, 140-148
  56. Siskind, D., McCartney, L., Goldschlager, R., & Kisely, S. (2016). Clozapine v. first-and second-generation antipsychotics in treatment-refractory schizophrenia: systematic review and meta-analysis. The British Journal of Psychiatry, 209(5), 385-392.
  57. Malhotra, A. K., Correll, C. U., Chowdhury, N. I., Müller, D. J., Gregersen, P. K., Lee, A. T., … & Kennedy, J. L. (2012). Association between common variants near the melanocortin 4 receptor gene and severe antipsychotic drug–induced weight gain. Archives of general psychiatry, 69(9), 904-912.
  58. Yu, Z., Wen, L., Shen, X., & Zhang, H. (2019). Effects of the OPRM1 A118G Polymorphism (rs1799971) on Opioid Analgesia in Cancer Pain. The Clinical journal of Pain, 35(1), 77-86.
  59. Erbi, I., Ciantelli, M., Farinella, R. et al. Role of OPRM1, clinical and anthropometric variants in neonatal pain reduction. Sci Rep 10, 7091 (2020).
  60. Genetic Influences on Opioid Use in Low Back Pain: OPRM1 rs1799971-https://unthsc-ir.tdl.org/handle/20.500.12503/27421
  61. Aslaksen, P. M., Forsberg, J. T., & Gjerstad, J. (2018). The opioid receptor mu 1 (OPRM1) rs1799971 and catechol-O-methyltransferase (COMT) rs4680 as genetic markers for placebo analgesia. Pain, 159(12), 2585-2592.
  62. Jiang, L., Zheng, Z., Fang, H., & Yang, J. (2021). A generalized linear mixed model association tool for biobank-scale data. Nature Genetics, 53(11), 1616-1621.
  63. Veluchamy, A., Hébert, H. L., Meng, W., Palmer, C. N., & Smith, B. H. (2018). Systematic review and meta-analysis of genetic risk factors for neuropathic pain. Pain, 159(5), 825-848.
  64. Levran, O., & Kreek, M. J. (2021). Population-specific genetic background for the OPRM1 variant rs1799971 (118A> G): implications for genomic medicine and functional analysis. Molecular Psychiatry, 26(7), 3169-3177.
  65. Bousman, C. A., Müller, D. J., Ng, C. H., Byron, K., Berk, M., & Singh, A. B. (2017). Concordance between actual and pharmacogenetic predicted desvenlafaxine dose needed to achieve remission in major depressive disorder: a 10-week open-label study. Pharmacogenetics and Genomics, 27(1), 1.
  66. Wu, Y., Cao, H., Baranova, A., Huang, H., Li, S., Cai, L., … & Wang, Q. (2020). Multi-trait analysis for genome-wide association study of five psychiatric disorders. Translational Psychiatry, 10(1), 1-11.
  67. Byrne, E. M., Zhu, Z., Qi, T., Skene, N. G., Bryois, J., Pardinas, A. F., … & Wray, N. R. (2021). Conditional GWAS analysis to identify disorder-specific SNPs for psychiatric disorders. Molecular Psychiatry, 26(6), 2070-2081.
  68. Rehm, H. L., & Klein, T. E. (2021). An Investigation of the Knowledge Overlap between Pharmacogenomics and Disease Genetics. In PACIFIC SYMPOSIUM ON BIOCOMPUTING 2022 (pp. 385-396).
  69. Sun, H., Yuan, F., Shen, X., Xiong, G., & Wu, J. (2014). Role of COMT in ADHD: A systematic meta-analysis. Molecular Neurobiology, 49(1), 251–261. https://doi.org/10.1007/s12035-013-8516-5
  70. Madan, A., Walker, C. R., Weinstein, B., & Fowler, J. C. (2015). Pharmacogenomics in practice: a case report of personalized inpatient psychiatric care. Pharmacogenomics, 16(5), 433-439.
  71. Cacabelos, R. (2020). Pharmacogenomics of drugs used to treat brain disorders. Expert Review of Precision Medicine and Drug Development, 5(3), 181-234.
  72. Krumsiek, Jan, et al. “Mining the unknown: a systems approach to metabolite identification combining genetic and metabolic information.” (2012): e1003005.
  73. Shin, S. Y., Fauman, E. B., Petersen, A. K., Krumsiek, J., Santos, R., Huang, J., … & Soranzo, N. (2014). An atlas of genetic influences on human blood metabolites. Nature Genetics, 46(6), 543-550.
  74. He, B., Shi, J., Wang, X., Jiang, H., & Zhu, H. J. (2020). Genome-wide pQTL analysis of protein expression regulatory networks in the human liver. BMC Biology, 18(1), 1-16.
  75. Rueedi, R., Ledda, M., Nicholls, A. W., Salek, R. M., Marques-Vidal, P., Morya, E., … & Kutalik, Z. (2014). Genome-wide association study of metabolic traits reveals novel gene-metabolite-disease links. PLoS Genetics, 10(2), e1004132.
  76. Turner, S. T., Boerwinkle, E., O’Connell, J. R., Bailey, K. R., Gong, Y., Chapman, A. B., … & Johnson, J. A. (2013). Genomic association analysis of common variants influencing antihypertensive response to hydrochlorothiazide. Hypertension, 62(2), 391-397.
  77. Deininger, K. M., Vu, A., Page, R. L., Ambardekar, A. V., Lindenfeld, J., & Aquilante, C. L. (2016). CYP 3A pharmacogenetics and tacrolimus disposition in adult heart transplant recipients. Clinical Transplantation, 30(9), 1074-1081.
  78. Williams, J. A., Ring, B. J., Cantrell, V. E., Jones, D. R., Eckstein, J., Ruterbories, K., Hamman, M. A., Hall, S. D., & Wrighton, S. A. (2002). Comparative metabolic capabilities of CYP3A4, CYP3A5, and CYP3A7. Drug Metabolism and Disposition: The Biological Fate of Chemicals, 30(8), 883–891. https://doi.org/10.1124/dmd.30.8.883
  79. Meshkat, S., Rodrigues, N. B., Di Vincenzo, J. D., Ceban, F., Jaberi, S., McIntyre, R. S., … & Rosenblat, J. D. (2022). Pharmacogenomics of ketamine: A systematic review. Journal of psychiatric research, 145, 27-34.
  80. Krystal, A. D., & Prather, A. A. (2019). Sleep Pharmacogenetics: The Promise of Precision Medicine. Sleep Medicine Clinics, 14(3), 317-331.
  81. Brielmaier, B. D. (2006). Eszopiclone (Lunesta): A new nonbenzodiazepine hypnotic agent. Proceedings (Baylor University. Medical Center), 19(1), 54–59. https://doi.org/10.1080/08998280.2006.11928127
  82. Klen, J., Dolžan, V., & Janež, A. (2014). CYP2C9, KCNJ11 and ABCC8 polymorphisms and the response to sulphonylurea treatment in type 2 diabetes patients. European Journal of Clinical Pharmacology, 70(4), 421–428. https://doi.org/10.1007/s00228-014-1641-x
  83. Suzuki, K., Yanagawa, T., Shibasaki, T., Kaniwa, N., Hasegawa, R., & Tohkin, M. (2006). Effect of CYP2C9 genetic polymorphisms on the efficacy and pharmacokinetics of glimepiride in subjects with type 2 diabetes. Diabetes Research and Clinical Practice, 72(2), 148–154. https://doi.org/10.1016/j.diabres.2005.09.019
  84. Niemi, M., Cascorbi, I., Timm, R., Kroemer, H. K., Neuvonen, P. J., & Kivistö, K. T. (2002). Glyburide and glimepiride pharmacokinetics in subjects with different CYP2C9 genotypes. Clinical Pharmacology and Therapeutics, 72(3), 326–332. https://doi.org/10.1067/mcp.2002.127495
  85. Kirchheiner, J., Brockmöller, J., Meineke, I., Bauer, S., Rohde, W., Meisel, C., & Roots, I. (2002). Impact of CYP2C9 amino acid polymorphisms on glyburide kinetics and on the insulin and glucose response in healthy volunteers. Clinical Pharmacology and Therapeutics, 71(4), 286–296. https://doi.org/10.1067/mcp.2002.122476
  86. Yin, O. Q. P., Tomlinson, B., & Chow, M. S. S. (2005). CYP2C9, but not CYP2C19, polymorphisms affect the pharmacokinetics and pharmacodynamics of glyburide in Chinese subjects. Clinical Pharmacology and Therapeutics, 78(4), 370–377. https://doi.org/10.1016/j.clpt.2005.06.006
  87. Pontikes, T. K., Bloomberg, Z., & Halaris, A. (2021). Utility of Pharmacogenomics in Management of Attention-Deficit/Hyperactivity Disorder in Children and Adolescents: A Case Series. J Med Case Rep Case Series, 2, 18.
  88. Elsayed, N. A., Yamamoto, K. M., & Froehlich, T. E. (2020). Genetic Influence on Efficacy of Pharmacotherapy for Pediatric Attention-Deficit/Hyperactivity Disorder: Overview and Current Status of Research. CNS Drugs, 34(4), 389-414.
  89. Brown, J. T., Eum, S., Cook, E. H., & Bishop, J. R. (2017). Pharmacogenomics of autism spectrum disorder. Pharmacogenomics, 18(4), 403-414.
  90. Zarza, J. (2003). Major bleeding during combined treatment with indomethacin and low doses of acenocoumarol in a homozygous patient for 2C9*3 variant of cytochrome p-450 CYP2C9. Thrombosis and Haemostasis, 90(1), 161–162.
  91. Figueiras, A., Estany-Gestal, A., Aguirre, C., Ruiz, B., Vidal, X., Carvajal, A., Salado, I., Salgado-Barreira, A., Rodella, L., Moretti, U., Ibáñez, L., & EMPHOGEN group. (2016). CYP2C9 variants as a risk modifier of NSAID-related gastrointestinal bleeding: A case-control study. Pharmacogenetics and Genomics, 26(2), 66–73. https://doi.org/10.1097/FPC.0000000000000186
  92. Hong, X., Zhang, S., Mao, G., Jiang, S., Zhang, Y., Yu, Y., Tang, G., Xing, H., & Xu, X. (2005). CYP2C9*3 allelic variant is associated with metabolism of irbesartan in Chinese population. European Journal of Clinical Pharmacology, 61(9), 627–634. https://doi.org/10.1007/s00228-005-0976-8
  93. Marin, J. J., Serrano, M. A., Monte, M. J., Sanchez-Martin, A., Temprano, A. G., Briz, O., & Romero, M. R. (2020). Role of Genetic Variations in the Hepatic Handling of Drugs. International Journal of Molecular Sciences, 21(8), 2884.
  94. John, S. E., Antony, D., Eaaswarkhanth, M., Hebbar, P., Channanath, A. M., Thomas, D., … & Thanaraj, T. A. (2018). Assessment of coding region variants in Kuwaiti population: implications for medical genetics and population genomics. Scientific Reports, 8(1), 1-30.
  95. Chan, S. W., Hu, M., Ko, S. S. W., Tam, C. W. Y., Fok, B. S. P., Yin, O. Q. P., Chow, M. S. S., & Tomlinson, B. (2013). CYP2C19 genotype has a major influence on labetalol pharmacokinetics in healthy male Chinese subjects. European Journal of Clinical Pharmacology, 69(4), 799–806. https://doi.org/10.1007/s00228-012-1428-x
  96. Glauser, T. A., Holland, K., O’Brien, V. P., Keddache, M., Martin, L. J., Clark, P. O., … & Childhood Absence Epilepsy Study Group. (2017). Pharmacogenetics of antiepileptic drug efficacy in childhood absence epilepsy. Annals of Neurology, 81(3), 444-453. 
  97. Bundgaard, C., Eneberg, E., & Sánchez, C. (2016). P-glycoprotein differentially affects escitalopram, levomilnacipran, vilazodone and vortioxetine transport at the mouse blood-brain barrier in vivo. Neuropharmacology, 103, 104–111. https://doi.org/10.1016/j.neuropharm.2015.12.009
  98. J Betzenhauser, M., S Pitt, G., & Antzelevitch, C. (2015). Calcium channel mutations in cardiac arrhythmia syndromes. Current molecular pharmacology, 8(2), 133-142.
  99. Hedley, P. L., Jørgensen, P., Schlamowitz, S., Moolman-Smook, J., Kanters, J. K., Corfield, V. A., & Christiansen, M. (2009). The genetic basis of Brugada syndrome: A mutation update. Human Mutation, 30(9), 1256–1266. https://doi.org/10.1002/humu.21066
  100. Lippi, G., Montagnana, M., Meschi, T., Comelli, I., & Cervellin, G. (2012). Genetic and clinical aspects of Brugada syndrome: An update. Advances in Clinical Chemistry, 56, 197–208. https://doi.org/10.1016/b978-0-12-394317-0.00009-1
  101. Letsas, K. P., Kavvouras, C., Kollias, G., Tsikrikas, S., Korantzopoulos, P., Efremidis, M., & Sideris, A. (2013). Drug-induced Brugada syndrome by noncardiac agents. Pacing and Clinical Electrophysiology: PACE, 36(12), 1570–1577. https://doi.org/10.1111/pace.12234
  102. Crawford, R. R., Higdon, A. N., Casey, D. B., Good, D. E., & Mungrue, I. N. (2015). Multiple lithium-dependent Brugada syndrome unmasking events in a bipolar patient. Clinical Case Reports, 3(1), 14–18. https://doi.org/10.1002/ccr3.136
  103. Betzenhauser, M. J., Pitt, G. S., & Antzelevitch, C. (2015). Calcium Channel Mutations in Cardiac Arrhythmia Syndromes. Current Molecular Pharmacology, 8(2), 133–142. https://doi.org/10.2174/1874467208666150518114857
  104. Clarke, T. K., & Schumann, G. (2009). Gene–environment interactions resulting in risk alcohol drinking behaviour are mediated by CRF and CRF1. Pharmacology Biochemistry and Behavior, 93(3), 230-236.
  105. Fitzgerald, P. J. (2013). Elevated norepinephrine may be a unifying etiological factor in the abuse of a broad range of substances: alcohol, nicotine, marijuana, heroin, cocaine, and caffeine. Substance Abuse: Research and Treatment, 7, SART-S13019.
  106. Sickert, L., Müller, D. J., Tiwari, A. K., Shaikh, S., Zai, C., De Souza, R., … & Kennedy, J. L. (2009). Association of the α2A adrenergic receptor-1291C/G polymorphism and antipsychotic-induced weight gain in European–Americans. Pharmacogenomics, 10(7), 1169-1176.
  107. Tortajada-Genaro, L. A., Mena, S., Niñoles, R., Puigmule, M., Viladevall, L., & Maquieira, Á. (2016). Genotyping of single nucleotide polymorphisms related to attention-deficit hyperactivity disorder. Analytical and Bioanalytical Chemistry, 408(9), 2339-2345.
  108. Chung, J.-Y., Cho, J.-Y., Yu, K.-S., Kim, J.-R., Jung, H.-R., Lim, K.-S., Jang, I.-J., & Shin, S.-G. (2005). Effect of the UGT2B15 genotype on the pharmacokinetics, pharmacodynamics, and drug interactions of intravenous lorazepam in healthy volunteers. Clinical Pharmacology and Therapeutics, 77(6), 486–494. https://doi.org/10.1016/j.clpt.2005.02.006
  109. Cosaar® 12,5/50/100. AmiKoWeb. (2018, September). Retrieved April 11, 2022, from https://amiko.oddb.org/de/fi?gtin=52904
  110. Wang, D., & Sadee, W. (2016). CYP3A4 intronic snp rs35599367 (CYP3A4* 22) alters RNA splicing. Pharmacogenetics and Genomics, 26(1), 40.
  111. Sadee, W., Wang, D., Papp, A. C., Pinsonneault, J. K., Smith, R. M., Moyer, R. A., & Johnson, A. D. (2011). Pharmacogenomics of the RNA world: structural RNA polymorphisms in drug therapy. Clinical Pharmacology & Therapeutics, 89(3), 355-365.
  112. Al-Eitan, L. N., Rababa’h, D. M., & Alghamdi, M. A. (2021). Genetic susceptibility of opioid receptor genes polymorphism to drug addiction: A candidate-gene association study. BMC Psychiatry, 21(1), 1-14.
  113. Campa, D., Gioia, A., Tomei, A., Poli, P., & Barale, R. (2008). Association of ABCB1/MDR1 and OPRM1 gene polymorphisms with morphine pain relief. Clinical Pharmacology and Therapeutics, 83(4), 559–566. https://doi.org/10.1038/sj.clpt.6100385
  114. Chidambaran, V., Mavi, J., Esslinger, H., Pilipenko, V., Martin, L. J., Zhang, K., & Sadhasivam, S. (2015). Association of OPRM1 A118G variant with risk of morphine-induced respiratory depression following spine fusion in adolescents. The Pharmacogenomics Journal, 15(3), 255–262. https://doi.org/10.1038/tpj.2014.59
  115. Matic, M., Simons, S. H. P., van Lingen, R. A., van Rosmalen, J., Elens, L., de Wildt, S. N., Tibboel, D., & van Schaik, R. H. N. (2014). Rescue morphine in mechanically ventilated newborns associated with combined OPRM1 and COMT genotype. Pharmacogenomics, 15(10), 1287–1295. https://doi.org/10.2217/pgs.14.100
  116. Sree, K., Yadav, H., Rao, V. (2013). Pharmacogenomics in Diabetes Mellitus: Pathway to Personalized Medicine. Helix, 1, 215–220
  117. Chen, M., Hu, C., & Jia, W. (2015). Pharmacogenomics of glinides. Pharmacogenomics, 16(1), 45-60.
  118. Xing, Y., Pei, Z., & Chen, Y. (2017). Research progress in pharmacogenomics of oral antidiabetic drug in type 2 diabetes mellitus. Chinese Journal of Diabetes, 25(8), 748-755.
  119. Venkatachalapathy, P., Padhilahouse, S., Sellappan, M., Subramanian, T., Kurian, S. J., Miraj, S. S., … & Munisamy, M. (2021). Pharmacogenomics and personalized medicine in type 2 diabetes mellitus: Potential implications for clinical practice. Pharmacogenomics and Personalized Medicine, 14, 1441.
  120. Lam, Y. F., Duggirala, R., Jenkinson, C. P., & Arya, R. (2019). The Role of Pharmacogenomics in Diabetes. Pharmacogenomics, 247-269.
  121. Oliveira-Paula, G. H., Pereira, S. C., Tanus-Santos, J. E., & Lacchini, R. (2019). Pharmacogenomics and hypertension: Current insights. Pharmacogenomics and Personalized Medicine, 12, 341.
  122. McDonough, C. W., Warren, H. R., Jack, J. R., Motsinger‐Reif, A. A., Armstrong, N. D., Bis, J. C., … & Cooper‐DeHoff, R. M. (2021). Adverse Cardiovascular Outcomes and Antihypertensive Treatment: A Genome‐Wide Interaction Meta‐Analysis in the International Consortium for Antihypertensive Pharmacogenomics Studies. Clinical Pharmacology & Therapeutics, 110(3), 723-732.
  123. Yu, H. et al (2018). Five novel loci associated with antipsychotic treatment response in patients with schizophrenia: a genome-wide association study. The Lancet Psychiatry, 5(4), 327-338.
  124. Ikeda, M. et al (2019). Genome-wide association study detected novel susceptibility genes for schizophrenia and shared trans-populations/diseases genetic effect. Schizophrenia Bulletin, 45(4), 824-834.
  125. Yao, X., Glessner, J. T., Li, J., Qi, X., Hou, X., Zhu, C., … & Li, J. (2021). Integrative analysis of genome-wide association studies identifies novel loci associated with neuropsychiatric disorders. Translational Psychiatry, 11(1), 1-12.
  126. Goes, F. S., McGrath, J., Avramopoulos, D., Wolyniec, P., Pirooznia, M., Ruczinski, I., … & Pulver, A. E. (2015). Genome‐wide association study of schizophrenia in Ashkenazi Jews. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 168(8), 649-659.
  127. Rummel-Kluge, C., Komossa, K., Schwarz, S., Hunger, H., Schmid, F., Lobos, C. A., Kissling, W., Davis, J. M., & Leucht, S. (2010). Head-to-head comparisons of metabolic side effects of second generation antipsychotics in the treatment of schizophrenia: A systematic review and meta-analysis. Schizophrenia Research, 123(2–3), 225–233. https://doi.org/10.1016/j.schres.2010.07.012
  128. Skogh, E., Sjödin, I., Josefsson, M., & Dahl, M.-L. (2011). High correlation between serum and cerebrospinal fluid olanzapine concentrations in patients with schizophrenia or schizoaffective disorder medicating with oral olanzapine as the only antipsychotic drug. Journal of Clinical Psychopharmacology, 31(1), 4–9. https://doi.org/10.1097/JCP.0b013e318204d9e2
  129. Hartling, L., Abou-Setta, A. M., Dursun, S., Mousavi, S. S., Pasichnyk, D., & Newton, A. S. (2012). Antipsychotics in adults with schizophrenia: Comparative effectiveness of first-generation versus second-generation medications: a systematic review and meta-analysis. Annals of Internal Medicine, 157(7), 498–511. https://doi.org/10.7326/0003-4819-157-7-201210020-00525
  130. Duan, S. X., Guillemette, C., Journault, K., Krishnaswamy, S., von Moltke, L. L., & Greenblatt, D. J. (2002). Stereoselective conjugation of oxazepam by human UDP-glucuronosyltransferases (UGTs): S-oxazepam is glucuronidated by UGT2B15, while R-oxazepam is glucuronidated by UGT2B7 and UGT1A9. Drug Metabolism and Disposition, 30(11), 1257-1265.
  131. Alonso-Navarro, H., Martínez, C., García-Martín, E., Benito-León, J., García-Ferrer, I., Vázquez-Torres, P., Puertas, I., López-Alburquerque, T., Agúndez, J. A. G., & Jiménez-Jiménez, F. J. (2006). CYP2C19 polymorphism and risk for essential tremor. European Neurology, 56(2), 119–123. https://doi.org/10.1159/000095702
  132. Manuyakorn, W., Siripool, K., Kamchaisatian, W., Pakakasama, S., Visudtibhan, A., Vilaiyuk, S., Rujirawat, T., & Benjaponpitak, S. (2013). Phenobarbital-induced severe cutaneous adverse drug reactions are associated with CYP2C19*2 in Thai children. Pediatric Allergy and Immunology: Official Publication of the European Society of Pediatric Allergy and Immunology, 24(3), 299–303. https://doi.org/10.1111/pai.12058
  133. Ema. (2021, December 8). Ranexa (previously Latixa). European Medicines Agency. Retrieved April 11, 2022, from https://www.ema.europa.eu/en/medicines/human/EPAR/ranexa-previously-latixa
  134. Ranexa®. AmiKoWeb. (2020, August). Retrieved April 11, 2022, from https://amiko.oddb.org/de/fi?gtin=60533
  135. Hongkaew, Y., Medhasi, S., Pasomsub, E., Ngamsamut, N., Puangpetch, A., Vanwong, N., Chamnanphon, M., Limsila, P., Suthisisang, C., Wilffert, B., & Sukasem, C. (2018). UGT1A1 polymorphisms associated with prolactin response in risperidone-treated children and adolescents with autism spectrum disorder. The Pharmacogenomics Journal, 18(6), 740–748. https://doi.org/10.1038/s41397-018-0031-7
  136. Gouin-Thibault, I., Delavenne, X., Blanchard, A., Siguret, V., Salem, J. E., Narjoz, C., Gaussem, P., Beaune, P., Funck-Brentano, C., Azizi, M., Mismetti, P., & Loriot, M. A. (2017). Interindividual variability in dabigatran and rivaroxaban exposure: Contribution of ABCB1 genetic polymorphisms and interaction with clarithromycin. Journal of Thrombosis and Haemostasis: JTH, 15(2), 273–283. https://doi.org/10.1111/jth.13577
  137. Lähteenmäki, J., Vuorinen, A.-L., Pajula, J., Harno, K., Lehto, M., Niemi, M., & van Gils, M. (2021). Pharmacogenetics of Bleeding and Thromboembolic Events in Direct Oral Anticoagulant Users. Clinical Pharmacology and Therapeutics, 110(3), 768–776. https://doi.org/10.1002/cpt.2316
  138. Oz, M. D., Baskak, B., Uckun, Z., Artun, N. Y., Ozdemir, H., Ozel, T. K., Ozguven, H. D., & Suzen, H. S. (2020). Association between serotonin 2A receptor (HTR2A), serotonin transporter (SLC6A4) and brain-derived neurotrophic factor (BDNF) gene polymorphisms and citalopram/sertraline induced sexual dysfunction in MDD patients. The Pharmacogenomics Journal, 20(3), 443–450. https://doi.org/10.1038/s41397-019-0127-8
  139.  Zastrozhin, M. S., Sorokin, A. S., Agibalova, T. V., Grishina, E. A., Antonenko, A. Р., Rozochkin, I. N., … & Sychev, D. A. (2018). Using a personalized clinical decision support system for bromdihydrochlorphenylbenzodiazepine dosing in patients with anxiety disorders based on the pharmacogenomic markers. Human Psychopharmacology: Clinical and Experimental, 33(6), e2677.
  140. Xie, C., Pogribna, M., Word, B., Lyn-Cook, L., Lyn-Cook, B. D., & Hammons, G. J. (2017). In vitro analysis of factors influencing CYP1A2 expression as potential determinants of interindividual variation. Pharmacology Research & Perspectives, 5(2), e00299. https://doi.org/10.1002/prp2.299
  141. Nieminen, T., Uusitalo, H., Mäenpää, J., Turjanmaa, V., Rane, A., Lundgren, S., Ropo, A., Rontu, R., Lehtimäki, T., & Kähönen, M. (2005). Polymorphisms of genes CYP2D6, ADRB1 and GNAS1 in pharmacokinetics and systemic effects of ophthalmic timolol. A pilot study. European Journal of Clinical Pharmacology, 61(11), 811–819. https://doi.org/10.1007/s00228-005-0052-4
  142. Edeki, T. I., He, H., & Wood, A. J. (1995). Pharmacogenetic explanation for excessive beta-blockade following timolol eye drops. Potential for oral-ophthalmic drug interaction. JAMA, 274(20), 1611–1613.
  143. Ema. (2021, November 10). Ganfort. European Medicines Agency. Retrieved April 11, 2022, from https://www.ema.europa.eu/en/medicines/human/EPAR/ganfort
  144. Morley, K. C., Kranzler, H. R., Luquin, N., Baillie, A., Shanahan, M., Trent, R., … & Haber, P. S. (2018). Topiramate versus naltrexone for alcohol use disorder: study protocol for a genotype-stratified, double-blind randomised controlled trial (TOP study). Trials, 19(1), 1-10.
  145. Kranzler, H. R., Armeli, S., Wetherill, R., Feinn, R., Tennen, H., Gelernter, J., … & Pond, T. (2016). Self‐efficacy mediates the effects of topiramate and GRIK1 genotype on drinking. Addiction Biology, 21(2), 450-459.
  146. Kranzler, H. R., Armeli, S., Feinn, R., Tennen, H., Gelernter, J., & Covault, J. (2014). GRIK1 genotype moderates topiramate’s effects on daily drinking level, expectations of alcohol’s positive effects and desire to drink. International Journal of Neuropsychopharmacology, 17(10), 1549-1556.
  147. Kranzler, H. R., Armeli, S., Tennen, H., Gelernter, J., & Covault, J. (2014). GRIK1 genotype and daily expectations of alcohol’s positive effects moderate the reduction of heavy drinking by topiramate. Experimental and Clinical Psychopharmacology, 22(6), 494.
  148. Miners, J. O., Rees, D. L., Valente, L., Veronese, M. E., & Birkett, D. J. (1995). Human hepatic cytochrome P450 2C9 catalyzes the rate-limiting pathway of torsemide metabolism. The Journal of Pharmacology and Experimental Therapeutics, 272(3), 1076–1081.
  149. Sarfez Pharmaceuticals Inc. (2021). Soaanz: Highlights of prescribing information.
  150. Ikediobi, O., Aouizerat, B., Xiao, Y., Gandhi, M., Gebhardt, S., & Warnich, L. (2011). Analysis of pharmacogenetic traits in two distinct South African populations. Human Genomics, 5(4), 1-18.
  151. Saiz-Rodríguez, M., Belmonte, C., Derqui-Fernández, N., Cabaleiro, T., Román, M., Ochoa, D., … & Abad-Santos, F. (2017). Pharmacogenetics of trazodone in healthy volunteers: association with pharmacokinetics, pharmacodynamics and safety. Pharmacogenomics, 18(16), 1491-1502.
  152. Saiz-Rodríguez, M., Belmonte, C., Derqui-Fernández, N., Cabaleiro, T., Román, M., Ochoa, D., Talegón, M., Ovejero-Benito, M. C., & Abad-Santos, F. (2017). Pharmacogenetics of trazodone in healthy volunteers: Association with pharmacokinetics, pharmacodynamics and safety. Pharmacogenomics, 18(16), 1491–1502. https://doi.org/10.2217/pgs-2017-0116
  153. Primorac, D., Juginović, A., Filipčić, I., Mikula, I., Lazibat, I., Brkljačić, M., & Erceg, D. (2020). Effective Pharmacogenomic-driven Treatment of Major Depression: A Case Report. Psychiatria Danubina, 32(3-4), 428-430.
  154. Zhu, M. M., Li, H. L., Shi, L. H., Chen, X. P., Luo, J., & Zhang, Z. L. (2017). The pharmacogenomics of valproic acid. Journal of human genetics, 62(12), 1009-1014.
  155. Ghodke-Puranik, Y., Thorn, C. F., Lamba, J. K., Leeder, J. S., Song, W., Birnbaum, A. K., … & Klein, T. E. (2013). Valproic acid pathway: pharmacokinetics and pharmacodynamics. Pharmacogenetics and genomics, 23(4), 236.
  156. Yagi, M., Nakamura, T., Okizuka, Y., Oyazato, Y., Kawasaki, Y., Tsuneishi, S., … & Okamura, N. (2010). Effect of CPS14217C> A genotype on valproic‐acid‐induced hyperammonemia. Pediatrics International, 52(5), 744-748.
  157. Beitelshees, A. L., Navare, H., Wang, D., Gong, Y., Wessel, J., Moss, J. I., Sadee, W., Shorck, N., & Johnson, J. A. (2009). CACNA1C gene polymorphisms, cardiovascular disease outcomes, and treatment response. Circulation: Cardiovascular Genetics, 2(4), 362-370
  158. Eadon, M. T., Kanuri, S. H., & Chapman, A. B. (2018). Pharmacogenomic studies of hypertension: Paving the way for personalized antihypertensive treatment. Expert Review of Precision Medicine and Drug Development, 3(1), 33-47.
  159. Verweij, N., Benjamins, J. W., Morley, M. P., van de Vegte, Y. J., Teumer, A., Trenkwalder, T., … & van der Harst, P. (2020). The genetic makeup of the electrocardiogram. Cell Systems, 11(3), 229-238.
  160. Al-Eitan, L. N., Al-Maqableh, H. W., Mohammad, N. N., Khair Hakooz, N. M., & Dajani, R. B. (2020). Genetic Analysis of Pharmacogenomic VIP Variants of ABCB1, VDR and TPMT Genes in an Ethnically Isolated Population from the North Caucasus Living in Jordan. Current Drug Metabolism, 21(4), 307-317
  161. Pratt, V. M., Cavallari, L. H., Del Tredici, A. L., Gaedigk, A., Hachad, H., Ji, Y., … & Weck, K. E. (2021). Recommendations for Clinical CYP2D6 Genotyping Allele Selection: A Joint Consensus Recommendation of the Association for Molecular Pathology, College of American Pathologists, Dutch Pharmacogenetics Working Group of the Royal Dutch Pharmacists Association, and European Society for Pharmacogenomics and Personalized Therapy. The Journal of Molecular Diagnostics.
  162. L’Huillier, A. G., Ing Lorenzini, K., Crisinel, P. A., Rebsamen, M. C., Fluss, J., Korff, C. M., … & Desmeules, J. A. (2011). ABCB1 polymorphisms and neuropsychiatric adverse events in oseltamivir-treated children during influenza H1N1/09 pandemia. Pharmacogenomics, 12(10), 1493-1501.
  163. Hillary, R. F., McCartney, D. L., Harris, S. E., Stevenson, A. J., Seeboth, A., Zhang, Q., … & Marioni, R. E. (2019). Genome and epigenome wide studies of neurological protein biomarkers in the Lothian Birth Cohort 1936. Nature communications, 10(1), 1-9
  164. Zhou, L., Cao, Y., Long, H., Long, L., Xu, L., Liu, Z., … & Xiao, B. (2015). ABCB1, ABCC2, SCN1A, SCN2A, GABRA1 gene polymorphisms and drug resistant epilepsy in the Chinese Han population. Die Pharmazie-An International Journal of Pharmaceutical Sciences, 70(6), 416-420.
  165. Yao, J., Pan, Y. Q., Ding, M., Pang, H., & Wang, B. J. (2015). Association between DRD2 (rs1799732 and rs1801028) and ANKK1 (rs1800497) polymorphisms and schizophrenia: A meta‐analysis. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 168(1), 1-13.
  166. Rybakowski, J. K. (2013). Genetic influences on response to mood stabilizers in bipolar disorder. CNS Drugs, 27(3), 165-173.
  167. Lencz, T., Robinson, D. G., Xu, K., Ekholm, J., Sevy, S., Gunduz-Bruce, H., … & Malhotra, A. K. (2006). DRD2 promoter region variation as a predictor of sustained response to antipsychotic medication in first-episode schizophrenia patients. American Journal of Psychiatry, 163(3), 529-531.
  168. Perera, M. A., Thirumaran, R. K., Cox, N. J., Hanauer, S., Das, S., Brimer-Cline, C., … & Di Rienzo, A. (2009). Prediction of CYP3A4 enzyme activity using haplotype tag SNPs in African Americans. The Pharmacogenomics Journal, 9(1), 49-60.
  169. Zhang, H., Yang, Q., Zheng, W., Ouyang, Y., Yang, M., Wang, F., … & Wang, Z. (2016). CYP gene family variants as potential protective factors in drug addiction in Han Chinese. The Journal of Gene Medicine, 18(8), 147-153.
  170. Garnick, K. (2016). Demographic and genomic factors contributing to individual variability in zolpidem metabolism in vitro (Doctoral dissertation, Sackler School of Graduate Biomedical Sciences (Tufts University))
  171. Moon, H. J. et al . (2007). Effects of chromosomal variations on pharmacokinetic activity of zolpidem in healthy volunteers: An array-based comparative genomic hybridization study. Biochemical and Biophysical Research Communications, 356(4), 981-987.